

# Version Française MUSEE ULTIMHEAT®

## Jacques Jumeau

Technologie des composants utilisés dans le chauffage.

## Chapitre 38

# Caractéristiques comparées des élastomères



# Table de résistance chimique et thermique des différents élastomères usuels utilisés pour la fabrication des joints et des membranes.

### 1 - Caractéristiques mécaniques et chimiques

| Abréviation selon<br>ASTM 1418-79 et<br>ISO 1629           | NBR                                                                | EPDM                                                              | VMQ                                                             | FKM                                          | TPE                                   |
|------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------|---------------------------------------|
| Noms<br>commerciaux<br>et autres<br>désignations           | Buna-N, Nitrile                                                    | EP, EPT, EPR,<br>EPDM                                             | PVMQ, SI, Silicone                                              | Elastomères<br>fluorés, Viton ®,<br>Fluorel® | Santoprène®,<br>Mélange PP et<br>EPDM |
| Température mini<br>(°C/°F)                                | -30 (-22)                                                          | -40 (-40)                                                         | -50 (-58)                                                       | -20 (-4)                                     | -50 (-58)                             |
| Température maxi<br>(°C/°F)                                | 95 (203)                                                           | 130 (266)                                                         | 200 (392)                                                       | 200 (392)                                    | 110 (230)                             |
| Dureté Shore A                                             | 30 à 95                                                            | 30 à 90                                                           | 30 à 85                                                         | 40 à 95                                      | 40 à 80                               |
| Allongement<br>maximum                                     | 650%                                                               | 700%                                                              | 900%                                                            | 500%                                         | 450%                                  |
| Résistance au chlore actif                                 | Résiste à<br>l'hydroxyde de<br>soude à 60°C,<br>concentration 2.5% | Résiste à<br>l'hydroxyde de<br>soude à 100°C,<br>concentration 5% | Résiste à l'hydroxyde<br>de soude à 60°C,<br>concentration 2.5% | 5                                            | 5                                     |
| Résistance à<br>l'ozone (Taux<br>supérieurs à 1000<br>ppm) | 0                                                                  | 5 (à la température ambiante)                                     | 5                                                               | 5                                            | 5                                     |
| Résistance aux<br>UV                                       | 0                                                                  | 5                                                                 | 5                                                               | 5                                            | 5                                     |

#### 2 - Résistance aux produits chimiques

|                             | NBR                                                                                                                                                                          | EPDM | Silicone | Elastomères<br>fluorés | Mélange PP et<br>EPDM |  |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|------------------------|-----------------------|--|
| Gasoil                      | 5                                                                                                                                                                            | 0    | 1        | 5                      | 0                     |  |
| Benzène, Toluène            | 1                                                                                                                                                                            | 2    | 1        | 5                      | 2                     |  |
| Alcools                     | 5                                                                                                                                                                            | 5    | 5        | 5                      | 5                     |  |
| Ether                       | 1                                                                                                                                                                            | 4    | 1        | 5                      | 4                     |  |
| Kétone                      | 0                                                                                                                                                                            | 5    | 4        | 5                      | 5                     |  |
| Acétate d'éthyle            | 1                                                                                                                                                                            | 5    | 3        | 5                      | 5                     |  |
| Acides organiques           | 1                                                                                                                                                                            | 0    | 4        | 5                      | 0                     |  |
| Bases                       | 4                                                                                                                                                                            | 5    | 5        | 5                      | 5                     |  |
| Applications en eau potable | Selon les nuances utilisées ces élastomères peuvent être conformes à  - NSF : standard 61 pour eau potable  - WRC, KTW : pour application eau potable  - FDA : liste blanche |      |          |                        |                       |  |

- 5 : Excellent : Aucun effet.
- 4 : Bon : Effet mineur faiblement détectables, légère corrosion, décoloration.
- 3 : Moyen : Effets visibles, avec altération faible des propriétés.
- 2 : Passable : Effets visibles, avec altération des propriétés, non recommandé pour un usage continu.
- 1 : Mauvais : Usage non recommandé.
- 0 : Dangereux : Effets sévères, non recommandé quelle que soit l'application.
- Viton ® est une marque déposée de E. I. du Pont de Nemours.
- Fluorel ® est une marque déposée de Dyneon LLC.
- Santoprène® est une marque déposée de Monsanto/Advanced Elastomer Systems.

#### 3 - Autres caractéristiques des élastomères

|                                                        | NBR                      | EPDM                     | Silicone              | Elastomères<br>fluorés | Mélange PP et<br>EPDM |
|--------------------------------------------------------|--------------------------|--------------------------|-----------------------|------------------------|-----------------------|
| Durée de vie<br>estimée si utilisé<br>en membrane      | 10 millions de<br>cycles | 10 millions de<br>cycles | 15 millions de cycles | 3 millions de cycles   | 15 millions de cycles |
| Limites de<br>température<br>si utilisé en<br>membrane | 0-70°C                   | -20+85°C                 | -20+150°C             | -10+120°C              | 0-100°C               |

## Caractéristiques comparées des élastomères

|                           | NBR                                                                                 | EPDM                                                          | Silicone                                                      | Elastomères<br>fluorés                                                                                                    | Mélange PP et<br>EPDM                                                              |
|---------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Contre-<br>indications    | Pas de résistance à<br>la vapeur d'eau                                              | Pas de résistance<br>aux graisses<br>animales et<br>végétales | Pas de résistance à<br>la vapeur d'eau au-<br>dessus de 130°C | Pas de résistance<br>aux acétones,<br>hydrocarbures<br>halogénés ni au<br>fréon.                                          | Incompatible avec<br>Acétal et PVC.<br>Non résistant aux<br>huiles chaudes         |
| Avantages<br>particuliers | Meilleure<br>résistance aux<br>graisses animales<br>et végétales que le<br>silicone | Bonne résistance à<br>l'eau chaude et à la<br>vapeur          |                                                               | Températures<br>d'utilisation<br>similaires à celles<br>de l'EPDM,<br>mais meilleure<br>résistance à la<br>chaleur sèche. | Excellente<br>résistance à<br>l'ozone.<br>Excellente<br>résistance à la<br>flexion |

NB: ces valeurs et propriétés chimiques et physiques sont les propriétés générales de ces matériaux. Des limites différentes peuvent être applicables si ces matières doivent répondre à des normes spécifiques à des produits finis (UL, EN ou directives européennes).